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INTRODUCTION

A wide range of problems in both science and industry, stgfftiom micronozzles and extending to large aerodynamic
configurations and complex fundamental investigationaudfred flows, have been solved using the Direct Simulation
Monte Carlo [1] (DSMC) method. Thus, the ever-growing nesdsf robust, reliable, easy-to-use, and well-validated
code for DSMC computations is clearly seen. Such a code dhmulvell-documented and suitable for users without
specialized training in DSMC techniques.

There exist a number of both freeware and commercial packiige address these needs for numerically and er-
gonomically efficient DSMC systems. These codes include\D32 [2] developed and maintained by G.A.Bird,
MONACO [3] developed by lain D. Boyd et al., and DAC [4] deveda in Johnson Space Center. The develop-
ment of a powerful software system based on the DSMC methadsteated at the Laboratory of Computational
Aerodynamics (ITAM, Novosibirsk, Russia) at the end of tf880s, being concentrated on the following subjects:
mathematically grounded numerical schemes for the DSMQadkf5]; collision models for description of real gas
effects; parallel algorithms for the DSMC method and sgéezhniques for decreasing the computational cost; pre-
and post-processing systems that simplify the entire aytcheerodynamic studies, from geometric model definition
to visualization of results. This research resulted in tteaion of the SMILE system (Statistical Modeling In Low-
Density Environment) [6] capable of solving a very wide raofbasic and applied problems of rarefied gas dynamics.
The SMILE core code is written in FORTRAN90 and has no memimtdtions specific to static FORTRAN pro-
grams.

Our experience during the development of the SMILE softwegstem clearly demonstrates the fact that the greater
the capabilities of the DSMC system are, the harder it is talifgahe system by implementation of new models,
methods and algorithms. The necessity for the creation oEMO software system based on the new-generation
Object-oriented programming (OOP) approach became etiders several years ago.

The main goal of the present paper is to describe the basioigie and demonstrate example applications of the
SMILE++ parallel software system [7] developed at ITAM. T8®ILE++ is based on the OOP approach and is
completely written in C++. Itis the descendant of SMILE anddrporates most of the capabilities of the latter. At the
same time, it has new capabilities and significant advastaffered by OOP.

OBJECT-ORIENTED APPROACH IN DSMC

Specific features of high-altitude aerothermodynamicspaice vehicles impose specific requirements on software
applications used in this field: the need for generating amucomplicated three-dimensional geometric models and
grids; possibility of using various collisional models dfysicochemical processes and various gas/surface ititarac
models; availability of a database of chemical elementsy tholecular properties and parameters determining their
collisional interaction with other chemical elements; gib#ity of automation of the parallelization process vehil
retaining high efficiency of parallelization; possibilitf using a multizone approach and boundary conditions of
various types. The necessity to satisfy all these requinésmaakes computational systems extremely cumbersome and
sophisticated. On the other hand, the software systemdlbeuleadily modified for new capabilities. Simultaneously,
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FIGURE 1. Diagram of DSMC computation.

it is important to retain all already available capabilt@f the system. Object-oriented programming (OOP) is a key
mechanism in this task.

OOP implies that the code is a model of a real process as a s#erdcting objects. The object is described by a
number of parameters whose values determine the state objhaet and the set of operations (actions) that can be
performed by the object. It is important that there can besdveplaceable objects performing identical (or sinilar
operations, but by different methods. If each object is oasjble for a certain model of physical phenomena (e.g.,
different types of chemical reactions), then one can cordithe code from properly chosen objects (physical models)
for a particular problem, like a bricklayer makes a wall froncks.

As the objects are rather closed structural units of the dbiiemore convenient to use OOP in large-scale codes
developed by a team of programmers. As the interactionsedmatwthe objects (actions) are limited (the number of
actions usually does not exceed 20) and are specified atlgrstaye of code design, the code for each objectis created
independent of other codes. This approach substantiatiglgies the code development and prevents erroneous usage
of data stored for other purposes.

The most important problem in using OOP is optimal sepanatfoexamined phenomena into individual objects
and definition of properties and actions of these objectsviBion of the minimum possible interactions between the
objects facilitates replacing them by their inheritors amdplifies code modification.

The main objects in the DSMC++ code discussed are:

Species — properties of the gas species,

Mesh — geometric parameters of the mesh cell and methods of dafdetime cell number from specified coordinates,
Cell — mesh cell and its properties,

Particle — particle properties,

Geometry — description of the geometric shape and surface propeftibe spacecraft under study.

All these objects can be presented as something materiaisiing. There are other objects, however, which are
responsible for actions with other objects rather thanldigspg some material properties:

Generation — generation of new particles,

Move — motion of particles,

Collision — collision of particles,

Sampling — sampling of macroparameters,

Paralleler — interaction with other processors in multiprocessor caotagions.

Note that the mesh and the cells are different objects weaalkdyed to each other. The reason is that the mesh cells
usually contain statistical information not related to atisalar shape of the cell. Therefore, the mesh shape and its
dimension (2D/Axisymmetrical or 3D) may be changed, while tontents of the cells remain unchanged.

The overall diagram of computations (actions performeti witjects) is shown in Fig. 1. The objegbnfiguration
reads initial data from a file; depending on these data, iegns all necessary objects in the computer memory and
performs all preparatory computations. Each generateztbban address the container of particles or cells and order
properties needed for its further operation.

Each time step begins from generation of new particles bykjectGeneration Depending on the problem to be
solved, one of the inheritors of this object is used, whichagates particles for the 2D, 3D, or axisymmetric case. In



addition, particles can be generated on the domain bouridaternal flow), on a specified surface inside the domain
(e.g., the starting surface of the jet).

By means of the actioklove all particles are moved to a given time step. As previousted, a particular inheritor
is used for the 2D, 3D, or axisymmetric case. In the case ofticfgacollision with the spacecraft geometry, particle
reflection is modeled, and momentum imparted to the surfa@alculated. This momentum is summed up and is
further used to obtain the forces and moments acting on theegpaft. Reflection is modeled, for instance, by the
Nocilla model or by the specular-diffuse model, each of tHeximg represented by its own object generated during
task configuring. In addition, the particle may fall into dl ¢eat belongs to another processor. In this case, such a
particle is transferred to therocessorwhich stores particles in a buffer for subsequent transf@ther processors.
Thus, any objedMoveinteracts with the particles, mesh, geometry, and processo

After all particle are moved, the actid®@ommunications performed, which transfers the particles from the buffer
through theProcessorto other processors and receives the particles from otloeepsors. If the computations are
performed on one computer, then a single-processor imh@&ibcessoiis used, which only emulates all operations.
Then, the actioindexis performed, which determines which particles are locatezhch particular cell. This object
has inheritors that perform indexation for a one-specissgd for a mixture of gases with different methods of storing
the indices.

The actionCollision performs collisions of particles in the cell. This actioristx in the one-species and multi-
species variants. The single-species version involvesnétance, the VHS or VSS model of modeling post-collision
velocities and models for exchange of internal energy withtinuous or discrete energy. The multi-species variant
has additional objects responsible for chemical reactji8hsAll of them are inherited from a certain basic object
Reactionand can perform dissociation, recombination, or exchaegetions.

The actiorSamplingaccumulates statistical information about the particieb@ mesh cell. This information is used
as a basis for calculating gas-dynamic parameters of thdiélowBased on the accumulated statistical information,
the computational mesh is periodically adapted to the fldekfiledaptation means constructing a second-level mesh
in the cell. As the geometric size of the initial mesh remainshanged, the size of second-level cells is uniquely
determined by the level of splitting. The second level isdeekonly for more correct modeling of particle collisions;
therefore, it is used only in the acti@ollision. All other objects are not related to the second level. Theec state
of the system is periodically written into files (actidump. These files are used to continue the computations if they
were interrupted for some reason and to obtain flowfieldsclvis done by a separate program.

The OOP advantages are not visible for the final user. Forlojgges, however, it is much simpler to add new
physical models. For instance, the cl&mtaineris used to store particle properties, and the list of pragedan be
different, depending on the problem to be solved. The ptaseof each particle are located in a continuous segment
of memory. Arrangement of particle properties in this fragm as well as storage, extraction, and transformation of
types, is ensured by the container. The number of partielascbhange in the course of computations, but the set of
properties within one problem is identical for all part&ldhe structure of properties being stored is created befor
the beginning of computations. During problem configurieach physical model addresses the container and orders
a set of particle properties necessary for operation oftitidel (see Table 1).

The container remembers the type and length of each ordeogmbnty, the relative address from the particle
beginning, and the key identifying this property (see Fig.The sum of all lengths of the properties determines
the total length of the particle. During the computatiohs, physical model can extract and modify the corresponding
data for the required particle using this key. The partislaansferred to another processor by copying the memory
fragment occupied by this particle. The container also ioles/storage of properties in a file and loading of properties
from this file when the computation is restored.

TABLE 1. Particle properties required by different physical models

Property Move Collision Internal Energy
2D/Axisym. 3D Single Mixture Continuous Discrete

Vi, W,V X X X X

XY X X

VA X

Component X

Erot:Evib X

Lrot,Lvib X
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FIGURE 2. Structure of storage of particle properties.

A new physical model that requires additional particle mmies is added in the following sequence:

1. afile containing the description of the class of this medhel the methods (functions) of this class is created;

2. the initialization function is supplemented with a resp@to key words in the initial data file, which creates an
object of this class and invokes its initialization functidNecessary particle properties should be ordered in this
function;

3. initialization of the corresponding method is added mftimction of collisions (moving, or any other place where
this physical model is used).

In this sequence, all changes are concentrated in two oe thieees of the code. If the particle properties were
stored in a usual data array, then addition of a new propestyidvchange the array dimension, which would have to
be traced in all functions where this array is used. This @dnd a source of possible program errors, which can be
avoided by using OOP.

PARALLELIZATION

An important specific feature of the DSMC method is a rapidaghoof its computational cost with increasing
free-stream density. Moreover, it is possible to state rtwat the possibilities for further improvement of numerical
efficiency of the DSMC method by modification of its numerisahemes have been exhausted. Therefore, the only
realistic way to increase the efficiency of the method folodermodynamic applications is its parallelization. In
particular, it should be noted that modeling of real thrgaehsional flows around space vehicles at flight altitudes of
about 80 km (in the near-continuum regime) is impossibléetit using multiprocessor computers.

The SMILE++ code parallelization is based on the domain ogagsition concept where each processor operates
only with some part of the cells of the computational domaid with particles located in these cells. If a particle after
moving falls into a cell that belongs to another processerparticle should be transferred to this processor. Domain
decomposition can involve a dynamic algorithm, which pdigally re-distributes the cells between the processors,
based on accumulated statistical information. In this cabénformation that refers to a particular cell is transéel
to a new processor.

The time diagram of parallel implementation from the DSMCtimoel by an example of the SMILE++ software
system is shown in Fig. 3. The computational code for pdizditton invokes functions of an object of the class
ParalParent. A copy of the classMultiprocParalleler is created inside this class in the case of a multiprocessor
problem, and a copy of the clagingleParalleler is created for a single-processor proble®ingleParalleler
emulates a situation where all particles and cells belongni processor, and no particle or cell re-distribution is
neededMultiprocParalleler creates buffers for particle sendiggndBuffer for all other processors and one buffer
for particle receivindReciveBuffer. A processor map is also generated with indications of wpaticle belongs to
which processor.

Each time step includes generation of new particles and mgoof all particles on a processor. A cell in which
the particle is located after its moving is determined farteparticle. If this particle belongs to another processor,
its address in the corresponding buffer is requested fPanalParent; the particle is copied to this address and is
deleted from the previous processor. When the buffer igifitlee particles are transferred by the operati@msmit().
After moving all particles and transmission of all buffettggre follows the operatioBample, in which particles are
received from all processors to the receiving buffer ana tihansferred to the computational part of the program.
When all particles are obtained, intermolecular collisiane performed, statistical information is accumulated At
the end of the time step, the computations are synchrorntzedystem waits for a state where all processors finish this
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FIGURE 3. Time diagram of particle exchange.

step. Without synchronization, it may happen that a pradbat has few particles performs all motions and transfers
particles to a processor with a greater load, which is atifiybwith the previous step.

If dynamic balancing of processor loading is used, then dae Idistribution is analyzed after a certain specified
number of steps. If the loading is not uniform enough, thendbmain is again divided into subdomains in accordance
with the chosen algorithm. After that, similar to particlartsfer, the cells are transmitted to the corresponding
processors, and the processor maps are corrected. The $SMHystem employs various algorithms of dynamic load
balancing, which distribute the load in identical portidoetween the processors and minimize the time of exchange
between the processors. They include the "life" algoritti@ algorithm of division into identical parts, etc. Depam



on the problem to be solved and on the number of processalsdifferent algorithms are more efficient.

GRAPHIC USER INTERFACE

In addition to the computational code, a large amount ofahibformation has to be prepared for computations:

description of gas properties, geometric model, freeastrgparameters, parameters of methods used, etc. After

computations, results have to be processed and presengetbim convenient for analysis. For this purpose, the

Graphic User Interface (GUI) was developed. The GUI is asipecture over a set of programs, which can be divided

into the Pre-processing subsystem (programs for prepdgta), Post-processing subsystem (program for processing

results), and Processing subsystem (computational preggad programs for monitoring the computational process).
The Pre-processing subsystem includes:

- a database of chemical elements, molecular collisionschanhical reactions;

- a subsystem for geometric modeling designed for creatiagrtbdel of the geometric shape of the spacecraft
surface and defining its physical properties. As aerodyoaomputations require only the shape of the spacecraft
surface, its inner structure is not generated. Geometribatiitg of complex-shaped spacecraft surfaces is based
on the principle of the element-by-element descriptiorchEspacecraft is presented as a set of basic elementary
surfaces called primitives. The primitives can be flat eletsdrectangle, circle, etc.), fragments of surfaces
described by second-order equations (cone, sphere, paidtaic.), and surfaces defined by sections or by a set
of triangles. There is a particular triangulation programeach primitive.

- an Adviser program, which gives recommended values of tHdO &ethod parameters.
The Processing subsystem includes:

- a DSMC computational module;
- utilities that control the computation process, monit@ tionvergence of the solution, etc.

« utilities for changing the number of processors, restgrire statistical sampling, and changing the parameters
of the numerical method.

The Post-processing subsystem includes:

- utilities for processing of dump files and obtaining flowfigdrameters (in Tecplot and vtk formats), surface
distributions, distribution functions etc.;

« built-in tools for flowfield visualization;
« utilities for converting computed results into initial ddbr another computation.

EXAMPLES OF SMILE++ APPLICATION

Clipper spacecr aft

A specific feature of the "Clipper” spacecratft is its configiion: it has a lifting body shape, and its wings have
tip fins to increase the lift force and control spacecraftioroin terms of the yawing angle. Computations were
performed to determine the aerothermodynamic charattsrisf this spacecraft at altitudes from free-molecular
flight to 95 km. As a symmetric geometry with a zero rolling Engias studied, the computations were performed
only for one half of the body to reduce the computation timiee Tomputations were performed on supercomputers
of the Joint Supercomputer Center (Moscow) and of the SibeBupercomputer Center (Novosibirsk). Low-altitude
computations required approximately®Jfarticles and 2107 collision cells. The most expensive computations took
about 300 processor-hours. Up to 128 processors were uleafficiency of parallel computations was about 0.85.

Zones of extreme heating on the spacecraft surface wermetta these computations. The bow shock wave at
low altitudes (below 100 km) was found to be rather thin; whiebow shock wave is incident onto the spacecraft
wing, it induces significant local heating, which can leadiintegration of the spacecraft structure. Figure 4 shows
the pressure and Mach number fields and also the surfacibdiiin of the heat-transfer coefficient at an altitude of
95 km. Zones of extreme heating at the tip of the wing and aatha of incidence of the bow shock wave are clearly
visible.
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FIGURE 4. Pressure and Mach number flowfields around the Clipper spaftedeat transfer coefficient distribution. Altitude
95 km.

Reentry vehicle

Another example of computations performed by the SMILE+tvgare system is the computation of aerothermo-
dynamic characteristics of a promising reentry vehicle.il¢he previous case, the study was aimed at obtaining
aerothermodynamic parameters of the vehicle along itsetés@jectory. Investigations of this problem were foalise
on studying the influence of chemical reactions on aerotbdgmamic characteristics. The pressure flowfield around
this vehicle is shown in Fig. 5. The effect of chemical reaasi on distributions of thermodynamic characteristics in
the region of control flaps was estimated. The drag coeffickeanged only by 3%, while the heat-transfer coefficient
in the case with allowance for chemical reactions decretisedfold at an altitude of 75 km (heat-transfer coeffigent
for different altitudes are listed in Table 2). The compiatas were performed on 256 processors in the Joint Super-
computer Center (Moscow, Russia). The computations topkogmately 7000 processor-hours; the parallelization
efficiency was about 0.77.

CONCLUSIONS

A powerful software system SMILE++ for studying rarefied §las/s by the DSMC method is presented. The system
design is based on the principles of Object-Oriented Progrilmg, which makes it readily modifiable in order to add
new capabilities. The multiprocessing functionality of BHE++ is realized through an MPI interface and is capable
of running on multiprocessor SMP machines with shared mgrand HPC clusters with distributed memory. The
dynamic load balancing algorithms realized inside the asaon code allow one to achieve high speedups and
efficiency even on a large number of processors (up to 1000namd).

The SMILE++ system provides a complete lifecycle of compates starting from a geometry model, pre-
processing, going through the computation proper, andhiimiswith post-processing and presentation of results.
All SMILE++ subsystems have a Graphic User Interface, winietkes them user-friendly and easy to use. Some re-
sults of application of the system are given, which demansthe system capabilities for computing various problems
of rarefied gas dynamics.

TABLE 2. Heat transfer coefficient{of the reentry vehicle.

Altitude, km 100 90 85 80 75

Nonreacting flow 0.368 0.136 0.0947 0.0622 0.043
Reacting flow 0.31 0.0618 0.0338 0.0211 0.013
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FIGURE 5. Pressure flowfield around the promising reentry vehicletude 80 km. Angle of attack 40 deg.
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