
Parallel Object-Oriented Software System for DSMC
Modeling of High-Altitude Aerothermodynamic Problems

M.S. Ivanov, A.V. Kashkovsky, P.V. Vashchenkov and Ye.A. Bondar

Khristianovich Institute of Theoretical and Applied Mechanics, Institutskaya 4/1, Novosibirsk 630090, Russia

Keywords: DSMC, Software design
PACS: 47.45-n 02.60.Cb 01.50.hv

INTRODUCTION

A wide range of problems in both science and industry, starting from micronozzles and extending to large aerodynamic
configurations and complex fundamental investigations of rarefied flows, have been solved using the Direct Simulation
Monte Carlo [1] (DSMC) method. Thus, the ever-growing need for a robust, reliable, easy-to-use, and well-validated
code for DSMC computations is clearly seen. Such a code should be well-documented and suitable for users without
specialized training in DSMC techniques.

There exist a number of both freeware and commercial packages that address these needs for numerically and er-
gonomically efficient DSMC systems. These codes include DS2V/3V [2] developed and maintained by G.A.Bird,
MONACO [3] developed by Iain D. Boyd et al., and DAC [4] developed in Johnson Space Center. The develop-
ment of a powerful software system based on the DSMC method was started at the Laboratory of Computational
Aerodynamics (ITAM, Novosibirsk, Russia) at the end of the 1980s, being concentrated on the following subjects:
mathematically grounded numerical schemes for the DSMC method [5]; collision models for description of real gas
effects; parallel algorithms for the DSMC method and special techniques for decreasing the computational cost; pre-
and post-processing systems that simplify the entire cycleof aerodynamic studies, from geometric model definition
to visualization of results. This research resulted in the creation of the SMILE system (Statistical Modeling In Low-
Density Environment) [6] capable of solving a very wide range of basic and applied problems of rarefied gas dynamics.
The SMILE core code is written in FORTRAN90 and has no memory limitations specific to static FORTRAN pro-
grams.

Our experience during the development of the SMILE softwaresystem clearly demonstrates the fact that the greater
the capabilities of the DSMC system are, the harder it is to modify the system by implementation of new models,
methods and algorithms. The necessity for the creation of a DSMC software system based on the new-generation
Object-oriented programming (OOP) approach became evident to us several years ago.

The main goal of the present paper is to describe the basic ideology and demonstrate example applications of the
SMILE++ parallel software system [7] developed at ITAM. TheSMILE++ is based on the OOP approach and is
completely written in C++. It is the descendant of SMILE and incorporates most of the capabilities of the latter. At the
same time, it has new capabilities and significant advantages offered by OOP.

OBJECT-ORIENTED APPROACH IN DSMC

Specific features of high-altitude aerothermodynamics of space vehicles impose specific requirements on software
applications used in this field: the need for generating and using complicated three-dimensional geometric models and
grids; possibility of using various collisional models of physicochemical processes and various gas/surface interaction
models; availability of a database of chemical elements, their molecular properties and parameters determining their
collisional interaction with other chemical elements; possibility of automation of the parallelization process while
retaining high efficiency of parallelization; possibilityof using a multizone approach and boundary conditions of
various types. The necessity to satisfy all these requirements makes computational systems extremely cumbersome and
sophisticated. On the other hand, the software system should be readily modified for new capabilities. Simultaneously,



Generation Move Communication

Configuration

Index

CollisionSamplingAdaptationDump

FIGURE 1. Diagram of DSMC computation.

it is important to retain all already available capabilities of the system. Object-oriented programming (OOP) is a key
mechanism in this task.

OOP implies that the code is a model of a real process as a set ofinteracting objects. The object is described by a
number of parameters whose values determine the state of theobject and the set of operations (actions) that can be
performed by the object. It is important that there can be several replaceable objects performing identical (or similar)
operations, but by different methods. If each object is responsible for a certain model of physical phenomena (e.g.,
different types of chemical reactions), then one can configure the code from properly chosen objects (physical models)
for a particular problem, like a bricklayer makes a wall frombricks.

As the objects are rather closed structural units of the code, it is more convenient to use OOP in large-scale codes
developed by a team of programmers. As the interactions between the objects (actions) are limited (the number of
actions usually does not exceed 20) and are specified at an early stage of code design, the code for each object is created
independent of other codes. This approach substantially simplifies the code development and prevents erroneous usage
of data stored for other purposes.

The most important problem in using OOP is optimal separation of examined phenomena into individual objects
and definition of properties and actions of these objects. Provision of the minimum possible interactions between the
objects facilitates replacing them by their inheritors andsimplifies code modification.

The main objects in the DSMC++ code discussed are:

Species – properties of the gas species,
Mesh – geometric parameters of the mesh cell and methods of obtaining the cell number from specified coordinates,
Cell – mesh cell and its properties,
Particle – particle properties,
Geometry – description of the geometric shape and surface propertiesof the spacecraft under study.

All these objects can be presented as something material or existing. There are other objects, however, which are
responsible for actions with other objects rather than displaying some material properties:

Generation – generation of new particles,
Move – motion of particles,
Collision – collision of particles,
Sampling – sampling of macroparameters,
Paralleler – interaction with other processors in multiprocessor computations.

Note that the mesh and the cells are different objects weaklyrelated to each other. The reason is that the mesh cells
usually contain statistical information not related to a particular shape of the cell. Therefore, the mesh shape and its
dimension (2D/Axisymmetrical or 3D) may be changed, while the contents of the cells remain unchanged.

The overall diagram of computations (actions performed with objects) is shown in Fig. 1. The objectConfiguration
reads initial data from a file; depending on these data, it generates all necessary objects in the computer memory and
performs all preparatory computations. Each generated object can address the container of particles or cells and order
properties needed for its further operation.

Each time step begins from generation of new particles by theobjectGeneration. Depending on the problem to be
solved, one of the inheritors of this object is used, which generates particles for the 2D, 3D, or axisymmetric case. In



addition, particles can be generated on the domain boundary(external flow), on a specified surface inside the domain
(e.g., the starting surface of the jet).

By means of the actionMove, all particles are moved to a given time step. As previously noted, a particular inheritor
is used for the 2D, 3D, or axisymmetric case. In the case of a particle collision with the spacecraft geometry, particle
reflection is modeled, and momentum imparted to the surface is calculated. This momentum is summed up and is
further used to obtain the forces and moments acting on the spacecraft. Reflection is modeled, for instance, by the
Nocilla model or by the specular-diffuse model, each of thembeing represented by its own object generated during
task configuring. In addition, the particle may fall into a cell that belongs to another processor. In this case, such a
particle is transferred to theProcessor, which stores particles in a buffer for subsequent transferto other processors.
Thus, any objectMoveinteracts with the particles, mesh, geometry, and processor.

After all particle are moved, the actionCommunicationis performed, which transfers the particles from the buffer
through theProcessorto other processors and receives the particles from other processors. If the computations are
performed on one computer, then a single-processor inheritor Processoris used, which only emulates all operations.
Then, the actionIndexis performed, which determines which particles are locatedin each particular cell. This object
has inheritors that perform indexation for a one-species gas and for a mixture of gases with different methods of storing
the indices.

The actionCollision performs collisions of particles in the cell. This action exists in the one-species and multi-
species variants. The single-species version involves, for instance, the VHS or VSS model of modeling post-collision
velocities and models for exchange of internal energy with continuous or discrete energy. The multi-species variant
has additional objects responsible for chemical reactions[8]. All of them are inherited from a certain basic object
Reactionand can perform dissociation, recombination, or exchange reactions.

The actionSamplingaccumulates statistical information about the particles in the mesh cell. This information is used
as a basis for calculating gas-dynamic parameters of the flowfield. Based on the accumulated statistical information,
the computational mesh is periodically adapted to the flowfield. Adaptation means constructing a second-level mesh
in the cell. As the geometric size of the initial mesh remainsunchanged, the size of second-level cells is uniquely
determined by the level of splitting. The second level is needed only for more correct modeling of particle collisions;
therefore, it is used only in the actionCollision. All other objects are not related to the second level. The current state
of the system is periodically written into files (actionDump). These files are used to continue the computations if they
were interrupted for some reason and to obtain flowfields, which is done by a separate program.

The OOP advantages are not visible for the final user. For developers, however, it is much simpler to add new
physical models. For instance, the classContaineris used to store particle properties, and the list of properties can be
different, depending on the problem to be solved. The properties of each particle are located in a continuous segment
of memory. Arrangement of particle properties in this fragment, as well as storage, extraction, and transformation of
types, is ensured by the container. The number of particles can change in the course of computations, but the set of
properties within one problem is identical for all particles. The structure of properties being stored is created before
the beginning of computations. During problem configuring,each physical model addresses the container and orders
a set of particle properties necessary for operation of thismodel (see Table 1).

The container remembers the type and length of each ordered property, the relative address from the particle
beginning, and the key identifying this property (see Fig. 2). The sum of all lengths of the properties determines
the total length of the particle. During the computations, the physical model can extract and modify the corresponding
data for the required particle using this key. The particle is transferred to another processor by copying the memory
fragment occupied by this particle. The container also provides storage of properties in a file and loading of properties
from this file when the computation is restored.

TABLE 1. Particle properties required by different physical models.

Property Move Collision Internal Energy
2D/Axisym. 3D Single Mixture Continuous Discrete

Vx,Vy,Vz × × × ×

X,Y × ×

Z ×

Component ×

Erot ,Evib ×

Lrot ,Lvib ×



x y Vx Vy ...

Particle 1 Particle 2 ...

Particle 2 adress
Vx adrParticle Length

FIGURE 2. Structure of storage of particle properties.

A new physical model that requires additional particle properties is added in the following sequence:

1. a file containing the description of the class of this modeland the methods (functions) of this class is created;
2. the initialization function is supplemented with a response to key words in the initial data file, which creates an

object of this class and invokes its initialization function. Necessary particle properties should be ordered in this
function;

3. initialization of the corresponding method is added in the function of collisions (moving, or any other place where
this physical model is used).

In this sequence, all changes are concentrated in two or three places of the code. If the particle properties were
stored in a usual data array, then addition of a new property would change the array dimension, which would have to
be traced in all functions where this array is used. This would be a source of possible program errors, which can be
avoided by using OOP.

PARALLELIZATION

An important specific feature of the DSMC method is a rapid growth of its computational cost with increasing
free-stream density. Moreover, it is possible to state now that the possibilities for further improvement of numerical
efficiency of the DSMC method by modification of its numericalschemes have been exhausted. Therefore, the only
realistic way to increase the efficiency of the method for aerothermodynamic applications is its parallelization. In
particular, it should be noted that modeling of real three-dimensional flows around space vehicles at flight altitudes of
about 80 km (in the near-continuum regime) is impossible without using multiprocessor computers.

The SMILE++ code parallelization is based on the domain decomposition concept where each processor operates
only with some part of the cells of the computational domain and with particles located in these cells. If a particle after
moving falls into a cell that belongs to another processor, the particle should be transferred to this processor. Domain
decomposition can involve a dynamic algorithm, which periodically re-distributes the cells between the processors,
based on accumulated statistical information. In this case, all information that refers to a particular cell is transferred
to a new processor.

The time diagram of parallel implementation from the DSMC method by an example of the SMILE++ software
system is shown in Fig. 3. The computational code for parallelization invokes functions of an object of the class
ParalParent. A copy of the classMultiprocParalleler is created inside this class in the case of a multiprocessor
problem, and a copy of the classSingleParalleler is created for a single-processor problem.SingleParalleler
emulates a situation where all particles and cells belong toone processor, and no particle or cell re-distribution is
needed.MultiprocParalleler creates buffers for particle sendingSendBuffer for all other processors and one buffer
for particle receivingReciveBuffer. A processor map is also generated with indications of whichparticle belongs to
which processor.

Each time step includes generation of new particles and moving of all particles on a processor. A cell in which
the particle is located after its moving is determined for each particle. If this particle belongs to another processor,
its address in the corresponding buffer is requested fromParalParent; the particle is copied to this address and is
deleted from the previous processor. When the buffer is filled, the particles are transferred by the operationTransmit().
After moving all particles and transmission of all buffers,there follows the operationSample, in which particles are
received from all processors to the receiving buffer and then transferred to the computational part of the program.
When all particles are obtained, intermolecular collisions are performed, statistical information is accumulated, etc. At
the end of the time step, the computations are synchronized:the system waits for a state where all processors finish this



FIGURE 3. Time diagram of particle exchange.

step. Without synchronization, it may happen that a processor that has few particles performs all motions and transfers
particles to a processor with a greater load, which is still busy with the previous step.

If dynamic balancing of processor loading is used, then the load distribution is analyzed after a certain specified
number of steps. If the loading is not uniform enough, then the domain is again divided into subdomains in accordance
with the chosen algorithm. After that, similar to particle transfer, the cells are transmitted to the corresponding
processors, and the processor maps are corrected. The SMILE++ system employs various algorithms of dynamic load
balancing, which distribute the load in identical portionsbetween the processors and minimize the time of exchange
between the processors. They include the "life" algorithm,the algorithm of division into identical parts, etc. Depending



on the problem to be solved and on the number of processors used, different algorithms are more efficient.

GRAPHIC USER INTERFACE

In addition to the computational code, a large amount of initial information has to be prepared for computations:
description of gas properties, geometric model, free-stream parameters, parameters of methods used, etc. After
computations, results have to be processed and presented ina form convenient for analysis. For this purpose, the
Graphic User Interface (GUI) was developed. The GUI is a superstructure over a set of programs, which can be divided
into the Pre-processing subsystem (programs for preparingdata), Post-processing subsystem (program for processing
results), and Processing subsystem (computational programs and programs for monitoring the computational process).

The Pre-processing subsystem includes:

• a database of chemical elements, molecular collisions, andchemical reactions;
• a subsystem for geometric modeling designed for creating the model of the geometric shape of the spacecraft

surface and defining its physical properties. As aerodynamic computations require only the shape of the spacecraft
surface, its inner structure is not generated. Geometric modeling of complex-shaped spacecraft surfaces is based
on the principle of the element-by-element description. Each spacecraft is presented as a set of basic elementary
surfaces called primitives. The primitives can be flat elements (rectangle, circle, etc.), fragments of surfaces
described by second-order equations (cone, sphere, paraboloid, etc.), and surfaces defined by sections or by a set
of triangles. There is a particular triangulation program for each primitive.

• an Adviser program, which gives recommended values of the DSMC method parameters.

The Processing subsystem includes:

• a DSMC computational module;
• utilities that control the computation process, monitor the convergence of the solution, etc.
• utilities for changing the number of processors, restarting the statistical sampling, and changing the parameters

of the numerical method.

The Post-processing subsystem includes:

• utilities for processing of dump files and obtaining flowfieldparameters (in Tecplot and vtk formats), surface
distributions, distribution functions etc.;

• built-in tools for flowfield visualization;
• utilities for converting computed results into initial data for another computation.

EXAMPLES OF SMILE++ APPLICATION

Clipper spacecraft

A specific feature of the ”Clipper“ spacecraft is its configuration: it has a lifting body shape, and its wings have
tip fins to increase the lift force and control spacecraft motion in terms of the yawing angle. Computations were
performed to determine the aerothermodynamic characteristics of this spacecraft at altitudes from free-molecular
flight to 95 km. As a symmetric geometry with a zero rolling angle was studied, the computations were performed
only for one half of the body to reduce the computation time. The computations were performed on supercomputers
of the Joint Supercomputer Center (Moscow) and of the Siberian Supercomputer Center (Novosibirsk). Low-altitude
computations required approximately 108 particles and 2·107 collision cells. The most expensive computations took
about 300 processor-hours. Up to 128 processors were used. The efficiency of parallel computations was about 0.85.

Zones of extreme heating on the spacecraft surface were obtained in these computations. The bow shock wave at
low altitudes (below 100 km) was found to be rather thin; whenthe bow shock wave is incident onto the spacecraft
wing, it induces significant local heating, which can lead todisintegration of the spacecraft structure. Figure 4 shows
the pressure and Mach number fields and also the surface distribution of the heat-transfer coefficient at an altitude of
95 km. Zones of extreme heating at the tip of the wing and at thearea of incidence of the bow shock wave are clearly
visible.



FIGURE 4. Pressure and Mach number flowfields around the Clipper spacecraft. Heat transfer coefficient distribution. Altitude
95 km.

Reentry vehicle

Another example of computations performed by the SMILE++ software system is the computation of aerothermo-
dynamic characteristics of a promising reentry vehicle. Asin the previous case, the study was aimed at obtaining
aerothermodynamic parameters of the vehicle along its descent trajectory. Investigations of this problem were focused
on studying the influence of chemical reactions on aerothermodynamic characteristics. The pressure flowfield around
this vehicle is shown in Fig. 5. The effect of chemical reactions on distributions of thermodynamic characteristics in
the region of control flaps was estimated. The drag coefficient changed only by 3%, while the heat-transfer coefficient
in the case with allowance for chemical reactions decreasedthreefold at an altitude of 75 km (heat-transfer coefficients
for different altitudes are listed in Table 2). The computations were performed on 256 processors in the Joint Super-
computer Center (Moscow, Russia). The computations took approximately 7000 processor-hours; the parallelization
efficiency was about 0.77.

CONCLUSIONS

A powerful software system SMILE++ for studying rarefied gasflows by the DSMC method is presented. The system
design is based on the principles of Object-Oriented Programming, which makes it readily modifiable in order to add
new capabilities. The multiprocessing functionality of SMILE++ is realized through an MPI interface and is capable
of running on multiprocessor SMP machines with shared memory and HPC clusters with distributed memory. The
dynamic load balancing algorithms realized inside the computation code allow one to achieve high speedups and
efficiency even on a large number of processors (up to 1000 andmore).

The SMILE++ system provides a complete lifecycle of computations starting from a geometry model, pre-
processing, going through the computation proper, and finishing with post-processing and presentation of results.
All SMILE++ subsystems have a Graphic User Interface, whichmakes them user-friendly and easy to use. Some re-
sults of application of the system are given, which demonstrate the system capabilities for computing various problems
of rarefied gas dynamics.

TABLE 2. Heat transfer coefficient Ch of the reentry vehicle.

Altitude, km 100 90 85 80 75

Nonreacting flow 0.368 0.136 0.0947 0.0622 0.043
Reacting flow 0.31 0.0618 0.0338 0.0211 0.013



FIGURE 5. Pressure flowfield around the promising reentry vehicle. Altitude 80 km. Angle of attack 40 deg.

ACKNOWLEDGMENTS

The present study is supported by the Russian Foundation forBasic Research (RFBR Project No. 10-08-01203-
a), Lavrentyev Youth Grant "High-altitude aerothermodynamics of advanced spacecraft taking into account non-
equilibrium chemical reactions," and Program No. 11 of the Presidium of the Russian Academy of Sciences. This
support is gratefully acknowledged.

REFERENCES

1. G.A. Bird.Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.
2. G.A.Bird. “The DS2V/3V Program Suite for DSMC Calculations.” Rarefied Gas Dynamics: 24th Int. Symp., Porto Giardino,

Italy, July 10-16, 2004, (Ed. M.Capitelli), AIP Conferenceproceedings, Vol. 762, 2005, pp. 541-546.
3. Dietrich, S. and Boyd, I. D., 1996. “Scalar and Parallel Optimized Implementation of the Direct Simulation Monte Carlo

Method.”Journal of Computational Physics,vol. 126, pp. 328-342.
4. G.J.LeBeau “A User Guide for the DSMC Analysis Code (DAC) Software for Simulating Rarefied Gas Dynamic Environments,”

Revision DAC97-G, Jan. 2002.
5. M. S. Ivanov and S. V. Rogasinsky, “Analysis of Numerical Techniques of the Direct Simulation Monte Carlo Method in the

Rarefied Gas Dynamics,”Sov. J. Numer. Anal. Math. Model.3, 453-465 (1988).
6. M.S. Ivanov, G.N. Markelov, S.F. Gimelshein, “Statistical Simulation of Reactive Rarefied Flows: Numerical Approach and

Applications.” AIAA Paper 98-2669, Albuquerque, June 1998.
7. A.Kashkovsky, G.Markelov and M.Ivanov, “An Object-Oriented Software Design for the Direct Simulation Monte Carlo

Method,” AIAA 2001-2895.
8. A.V. Kashkovsky, Ye.A. Bondar, G.A. Zhukova, M.S. Ivanov, S.F. Gimelshein, “Object-Oriented Software Design of Real

Gas Effects for the DSMC Method,” Rarefied Gas Dynamics: 24thInt. Symp., Porto Giardino, Italy, July 10-16, 2004, (Ed.
M.Capitelli), AIP Conference proceedings, Vol. 762, 2005,pp.583-588.


